### Harsh Environment Sensor Cluster for Energy and Environment Single-Chip, Self-Powered, Wireless Sensor Systems



### **Professor Albert P. Pisano**

Dean, Jacobs School of Engineering Mechanical and Aerospace Engineering Electrical and Computer Engineering National Academy of Engineering University of California, San Diego

UCSD | School of Jacobs | Engineering

DeanPisano@eng.ucsd.edu +1 (858) 822-0162

# Harsh Environment Cluster Sensor

### Harsh Environment Sensor Cluster



"Harsh environment" includes extremes of pressure, temperature, shock, radiation and chemical attack.

School of

Real-time sensing enables increased operation lifetimes, improved efficiency and reduced emissions. €UCSD Jacobs Engineering

### **Integrated SiC Sensors & Electronics**

![](_page_2_Figure_2.jpeg)

# SiC and AIN Material Properties

#### Harsh Environment Sensor Cluster

| Property                                                   | Silicon Carbide<br>3C-SiC (6H-SiC) | AIN  | Silicon | Diamond              |
|------------------------------------------------------------|------------------------------------|------|---------|----------------------|
| Melting Point (°C)                                         | 2830 (2830)<br>sublimes            | 2470 | 1420    | 4000<br>phase change |
| Energy Gap (eV)                                            | 2.4 (3.0)                          | 6.2  | 1.12    | 5.6                  |
| Critical Field (×10 <sup>6</sup> V/cm)                     | 2.0 (2.5)                          | 10   | 0.25    | 5.0                  |
| Thermal Conductivity (W/cm-K)                              | 5.0 (5.0)                          | 1.6  | 1.5     | 20                   |
| Young's Modulus (GPa)                                      | 450 (450)                          | 340  | 190     | 1035                 |
| Acoustic Velocity (x10 <sup>3</sup> m/s)                   | 11.9 (11.9)                        | 11.4 | 9.1     | 17.2                 |
| Failure Strength (GPa)                                     | 21 (21)                            | -    | 7       | 53                   |
| Coeff. of Thermal Expansion ( $^{\circ}C \times 10^{-6}$ ) | 3.0 (4.5)                          | 4.0  | 2.6     | 0.8                  |
| Chemical Stability                                         | Excellent                          | Good | Fair    | Fair                 |

Material properties of SiC, AIN and other semiconductor materials.

<del>₹</del>UCSD

School of

Jacobs | Engineering

SiC and AIN are mechanically robust, chemically inert and electrically stable wide-band gap semiconductor materials.

# **LPCVD Polycrystalline 3C-SiC**

### Harsh Environment Sensor Cluster

![](_page_4_Figure_2.jpeg)

- Low pressure chemical vapor deposition (LPCVD) of polycrystalline 3C-SiC
  - 4 in (100 mm) & 6 in (150 mm) compatible
  - Deposition temperature = 800°C
  - Precursors
    - 1,3-Disilabutane (CH<sub>3</sub>SiH<sub>2</sub>CH<sub>2</sub>SiH<sub>3</sub>)
    - Ammonia (NH<sub>3</sub>)
- Process was optimized to obtain low stress, strain gradient and resistivity films.

C.S. Roper et al., Electrochemical and Solid-State Letters (2008)

![](_page_4_Picture_11.jpeg)

![](_page_4_Figure_12.jpeg)

### **LPCVD Cost Reduction**

#### Harsh Environment Sensor Cluster

|                          |        | -      | -                    |                         |                                 |
|--------------------------|--------|--------|----------------------|-------------------------|---------------------------------|
| Precursor                | Purity | State  | Price<br>per<br>gram | Price per<br>mol of SiC | Deposition<br>Temperature (°C ) |
| 1,3-Disilabutane*        | 98%    | Liquid | \$ 22                | \$ 990                  | 750-850                         |
| Methylsilane**           | 99.9%+ | Gas    | \$ 17                | \$ 798                  | 750-850                         |
| Methyltrichloro-silane** | 99%    | Liquid | \$ 0.062             | \$ 9.24                 | 1000-1200                       |

\* - Current technology which previously demonstrated low stress, low resistivity films for sensor fabrication.

\*\* - Proposed technology to be developed and characterized for improved cost.

### **Heteroepitaxial 3C-SiC on AIN**

#### Harsh Environment Sensor Cluster

**Structural layers for AIN/SiC Devices -** 3C-SiC deposited on aluminum nitride (AIN) with Methyltrichlorosilane (CH<sub>3</sub>SiCl<sub>3</sub>) precursor

![](_page_6_Figure_3.jpeg)

€UCSD

School of

Jacobs | Engineering

W.C. Lien, K.B. Cheng, D.G. Senesky, C. Carraro, A.P. Pisano & R. Maboudian, Electrochemical and Solid-State Letters (2010)

### **High-T Metallization on 3C-SiC**

![](_page_7_Figure_2.jpeg)

### SiC Resistance Testing

#### Harsh Environment Sensor Cluster

#### **Chemical Resistance:**

![](_page_8_Figure_3.jpeg)

Optical images of (a) SiC-coated and (b) uncoated polysilicon structures following immersion in 65°C KOH for 1 minute

#### **Mechanical Toughness:**

| Material | Fracture<br>Strain | Fracture<br>Stress (GPa) |
|----------|--------------------|--------------------------|
| Poly-Si  | 1.5%               | 2.5                      |
| Poly-SiC | 3.3%               | 23                       |

#### Wear Resistance:

![](_page_8_Picture_8.jpeg)

SEM images of (a) poly-Si after 250,000 cycles and (b) SiC-coated beam after 1 million cycles of high contact pressure rubbing.

#### **Oxidation Resistance:**

| Material     | Oxide Thickness after<br>100 hours in Air at 850 <sup>o</sup> C |
|--------------|-----------------------------------------------------------------|
| Diamond-like | Completely burned out                                           |
| Carbon (DLC) | after 24 hours                                                  |
| Si           | 300 nm                                                          |
| Poly-SiC     | 50 nm                                                           |

![](_page_8_Picture_12.jpeg)

M.B.J. Wijesundara, D. Gao, A.P. Pisano & R. Maboudian

## SiC Sensor Operation at 600°C

#### Harsh Environment Sensor Cluster

![](_page_9_Figure_2.jpeg)

- The polycrystalline 3C-SiC sensor resonates in air and can operate at 600°C in dry steam
- The strain sensor has a sensitivity of 66 Hz/ $\mu\epsilon\,$  and resolution of 0.045  $\mu\epsilon$  in a 10 kHz bandwidth
- This poly-SiC sensor utilizes a fabrication process that can be utilized realize other harsh environment sensors.

D. R. Myers et al., J. Micro/Nanolith. MEMS MOEMS (2009)

![](_page_9_Picture_7.jpeg)

## G-Shock Testing at 64,000 g

### Harsh Environment Sensor Cluster

### **Gas Gun Schematics**

11

![](_page_10_Figure_3.jpeg)

- G-shock Testing carried out at Aerophysics Research Center at University of Alabama in Huntsville
- Hard-launch soft-catch method
- Initial G-load is 64,000 g

![](_page_10_Picture_7.jpeg)

- No structural damage after g-shock at 64,000g
- Successfully operates (resonates) after enduring a 64,000 g shock

![](_page_10_Picture_10.jpeg)

### **Bonding for In-chamber Operation**

![](_page_11_Figure_2.jpeg)

### **Exposure Testing**

#### Harsh Environment Sensor Cluster

![](_page_12_Figure_2.jpeg)

Exposure testing of sensor materials in supercritical  $H_2O$  (with Ni ions) environments (P = 100 MPa, Temperature = 427°C) with Tuttle pressure vessel.

### **Exposure Testing**

#### Harsh Environment Sensor Cluster

14

![](_page_13_Figure_2.jpeg)

### **Energy Flow for USA (circa 2006)**

#### Harsh Environment Sensor Cluster

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

Source: Energy Flow Charts, LLNL, 2006 - https://eed.llnl.gov/flow

# **Geothermal Energy**

![](_page_15_Figure_2.jpeg)

### **U.S. Geothermal Resources**

#### Harsh Environment Sensor Cluster

![](_page_16_Picture_2.jpeg)

### <u>Western United States</u> Geothermal Energy Resources:

- Hydrothermal = 30,000 MW

### - Enhanced Geothermal Systems (EGS) = <u>500,000 MW</u>

![](_page_16_Picture_6.jpeg)

### **European Geothermal Resources**

#### Harsh Environment Sensor Cluster

![](_page_17_Figure_2.jpeg)

18 Source:

http://europa.eu.int/comm/research/energy/nn/nn\_rt/nn\_rt\_geo/article\_1134\_en.htm

![](_page_17_Picture_5.jpeg)

### **Geothermal Resources in Japan**

### Harsh Environment Sensor Cluster

![](_page_18_Figure_2.jpeg)

Kirishima-kokusai Hote

Yamaqawa

Source:

http://wwwsoc.nii.ac.jp/grsj/geothermalinJ/Re s&PP/P\_Plant/main121.html

ool of ineering

### **Sensor Cluster in the Ground**

![](_page_19_Figure_2.jpeg)

### **Cluster Sensor in the Ground**

![](_page_20_Figure_2.jpeg)

### **Cluster Sensor in the Gas Turbine**

![](_page_21_Figure_2.jpeg)

# **Cluster Sensor in Transportation**

![](_page_22_Figure_2.jpeg)

### **Sensor Cluster in the Automobile**

#### Harsh Environment Sensor Cluster

![](_page_23_Picture_2.jpeg)

• MEMS Sensor on Wheel Communicates via RF to Transceiver on Chassis

![](_page_23_Picture_4.jpeg)

 MEMS Sensor on Shock Tower Measures Vertical Forces On Chassis for DSC Application School of Engineering

### **Sensor Cluster in the Tire**

![](_page_24_Picture_2.jpeg)

# **Molding & Vulcanization**

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

- 4 embedded samples
- 5x5mm2 each
- Array of SiC Zener diodes
  - Survivability test
- Si substrate covered with SiO2/SiC
  - Delamination test
- Two Si substrates
  - Bare Si
  - Si + Ni (2nm)
  - → Sample/rubber adhesion

### **Cluster Sensor in the Auto Engine**

#### Harsh Environment Sensor Cluster

![](_page_26_Picture_2.jpeg)

Test Fixture for signal collection. There are two die attachment methods:

- 1) <u>Simultaneous Electrical and</u> <u>Mechanical Attachment via Ni</u> Resbond with Auxiliary Mechanical Attachment via Ceramic Adhesive
- Separate Electrical and Mechanical Attachment via Ceramic Adhesive for Mechanical and Aluminum Wire Bonds for Electrical

![](_page_26_Picture_6.jpeg)

### **Cluster Sensor in the Auto Engine**

#### Harsh Environment Sensor Cluster

![](_page_27_Figure_2.jpeg)

Bias voltage -> leakage current -> ion concentration detection

![](_page_27_Figure_4.jpeg)

**5.5V peak signal** (from 120V bias voltage). Expecting < 0.010V resolution.

1 cm<sup>2</sup> fired alumina substrate

![](_page_27_Picture_7.jpeg)

Ceramic shield to

Sintered Pt electrodes (1mm wide, 1mm gap)

Controlled flame jet Methane diffusion flame

#### Prototype fabricated and tested:

- Platinum ink on alumina substrate
- Preliminary tests show geometry has good sensitivity to flames

#### Next steps:

- Production via MEMS or microprinting technology
- Design and construction of test chamber

![](_page_27_Picture_17.jpeg)

### **Cluster Sensor Landslide Prediction**

rod finalizes the

#### Harsh Environment Sensor Cluster

### Landslide Sensor Rod Concept

#### Installation: the sensor rod is driven into the ground

by conventional, hydraulic ground driving ethods that are fast and cost-efficient.

Initially, the sensor rod forms a solid unit hat is very stiff to the uxially applied driving forces. The landslide sensor clusters on the sensor rod are specifically designed to survive the large shock forces from the installation.

![](_page_28_Figure_6.jpeg)

#### Operation:

Each segment of the sensor rod is equipped with a sensor cluster bonded to the outside of the rod and a small frontend circuit inside the rod.

![](_page_28_Figure_9.jpeg)

### **Cluster Sensor in the Infrastructure**

#### Harsh Environment Sensor Cluster

![](_page_29_Figure_2.jpeg)

Figure from The Economist Magazine

ol of neering

## **Advanced Sensor Cluster Prototype**

#### Harsh Environment Sensor Cluster

- Temperature sensor is resistive type (resistance changes linearly with temperature)
- Sensor size can be very small (e.g. 200 µm x 200 µm)
- Many temperature sensors can be placed on the sensor cluster chip
- Linearity is very good for Molybdenum in the required temperature range

![](_page_30_Figure_6.jpeg)

Example of Sensor Design 

### Example of Placement

Note: This is a schematic figure. The actual design of the prototype I chip will be submitted later.

![](_page_30_Picture_10.jpeg)

![](_page_30_Picture_11.jpeg)

Source: www.elmettechnologies.com

## **Pre-Prototype Design**

### Harsh Environment Sensor Cluster

![](_page_31_Figure_2.jpeg)

Jacobs Engineering

### **Pre-Prototype Results**

![](_page_32_Figure_2.jpeg)

### **Pre-Prototype Results**

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

### **AIN Pressure Sensor Design**

#### Harsh Environment Sensor Cluster

![](_page_34_Figure_2.jpeg)

Characteristic Equation for Circular Membrane:

 $\frac{Pa^4}{Eh^4} = 5.86\frac{y}{h} + 3.19\frac{y^3}{h^3}$ 

35

Resonance frequency of membrane:

$$\omega = 9.22 \frac{h}{a^2} \sqrt{\left[\frac{E}{\rho(1-\mu^2)}\right]}$$

 $a = radius, b = thickness, y = deflection, E = Young's modulus, Ae = effective area of corrugated diaphragm, D = flesural rigidity, <math>\mu = Poisson's ratio, \rho = specific weight of membrane material.$ Poisson's ratio,  $\rho = specific weight of membrane material.$ 

### **Cluster Prototype Assembly**

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_3.jpeg)

### **Cluster Prototype Assembly**

#### Harsh Environment Sensor Cluster

![](_page_36_Picture_2.jpeg)

Reference Device Open to Atmosphere on Top and Bottom

![](_page_36_Picture_4.jpeg)

### **Cluster Prototype Assembly**

#### Harsh Environment Sensor Cluster

![](_page_37_Picture_2.jpeg)

Sealed Cavity of Pressure Sensor

![](_page_37_Picture_4.jpeg)

## Conclusion

- Sensor Cluster for
  - Energy & Environment / Gas Turbine
  - Transportation / Automobile Engine
  - Landslide Prediction / Built Infrastructure
- Common Fabrication Process
- Many Sensors on One Chip
- Sensor Signal and Packaging are the Next Challenges
- Seeking Industrial Collaboration

### Acknowledgements

- BSAC
- UC Berkeley Nanolab
- Prof. Roya Maboudian
- Dr. Carlo Carraro
- Dr. Maxime Vincent
- Dr. Ayden Maralani
- Dr. Gabriele Vigevani
- Dr. Debbie G. Senesky
- Mr. David Rolfe

- Mr. Matt Chan
- Ms. Sarah Wodin-Schwartz
- Mr. Fabian Goericke
- Ms. Kirti Mansukhani
- Ms. Yun-Ju "Matilda" Lai
- Mr. Wei-Cheng Lien
- Ms. Nuo Zhang
- Mr. Ting-Ta "Ernest" Yen
- Mr. Chih-Ming "Gimmy" Lin

![](_page_39_Picture_20.jpeg)

![](_page_40_Picture_0.jpeg)

Harsh Environment Sensor Cluster

# **Thank You!**

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

41