

JACOBS SCHOOL CORPORATE AFFILIATES PROGRAM

Amazon Mitchell

ATA Engineering Miva Merchant

BAE Systems NAVAIR - North Island

Booz Allen Hamilton Networkfleet

Becton Dickinson Northrop Grumman
Bentley Systems NOVO Engineering

Cisco Systems Ntrepid
CliniComp Oracle

Corning Quake Global Cubic Transportation Qualcomm

Cymer Quartus Engineering

Cypress Semiconductor Raytheon

Entropic Communications Rincon Research

Facebook SAIC
General Atomics Samsung
Gen-Probe Schlumberger

Goodrich Aerostructures Semantic System (ai-one)
Google Sempra Energy: SDG&E
Hilli Corporation Simon Wong Engineering

Hilti Corporation Simon Wong Engineering
Hughes Network Systems Skyworks Solutions

Kaiser Permanente SPAWAR Systems Center Pacific

Solar Turbines

Kyocera America Teradata
L-3 Communications Trellisware
Life Technologies USN RD
Lockheed Martin ViaSat
Magma Mission Technologies Group Yahoo!

Ideal Industries

Be part of this vital partnership between the Jacobs School of Engineering and its Corporate Affiliates Program 858-534-3148 capstaff@ucsd.edu www.jacobsschool.ucsd.edu/cap

RESEARCH EXPO

April 12, 2012

PREMIER SPONSORS

QUALCOM® ViaSat®

PARTNER SPONSOR

Jacobs School of Engineering University of California, San Diego

AGENDA

1:00 p.m.	REGISTRATION
Price Center Foyer	
1:30-4:30 p.m.	POSTER SESSION
Price Center West Ballroom A and B	230+ Graduate students display their research results
2:30-4:30 p.m.	FACULTY PRESENTATIONS
Price Center Forum (4th Floor)	Ten-minute faculty talks
2:30 p.m.	"Research on Earthquake Performance of Large-Scale Geotechnical Structures" Patrick J. Fox
2:50 p.m.	"CitiSense – A Participatory Air Quality Sensing System for Real-Time User Feedback" William G. Griswold
3:10 p.m.	"Master of Advanced Study in Medical Device Engineering" Juan C. Lasheras
3:30 p.m.	"Tattoo Electronics for Biomedical Applications" Todd P. Coleman
3:50 p.m.	"Biomolecular Architectures and Systems for Nanoengineering Thin Film Devices" Jennifer N. Cha
4:10 p.m.	"Music Search and Recommendation" Gert Lanckriet
4:30-6:00 p.m.	NETWORKING RECEPTION
Price Center East Ballroom	Meet faculty, students and industry professionals Best poster awards

FACULTY PRESENTATIONS		Page 6-7
GRADUATE STUDENT RESEARCH POSTERS		
Departments	Poster Numbers	
Bioengineering	1-39	Page 9-11
Computer Science and Engineering	40-77	Page 12-14
Electrical and Computer Engineering	78-129	Page 15-18
Mechanical and Aerospace Engineering	130-185	Page 19-22
NanoEngineering	186-212	Page 23-24
Structural Engineering	213-230	Page 25-26
Research Expo Poster Judges		Page 29, 31
Academic Departments and Research Institu	tes	Page 33
Research Expo Map		Page 34
Poster Exhibit Layout		Back Cover

FACULTY PRESENTATIONS 2:30-4:30 p.m. Price Center Forum (4TH Floor)

Structural Engineering

2:30 p.m.

Patrick J. Fox, Professor

"Research on Earthquake Performance of Large-Scale Geotechnical Structures"

Earthquakes pose a serious hazard to many areas of the U.S., including Southern California. Professor Fox will present an overview of current research efforts to better understand the seismic performance and survivability of geotechnical structures, such as retaining walls and bridge foundations, through large-scale testing at the UC San Diego Englekirk Structural Engineering Center.

Computer Science and Engineering

2:50 p.m.

William G. Griswold, Professor
"CitiSense – A Participatory Air Quality Sensing System for Real-Time User Feedback"

Government pollution monitoring is sparse, reporting regional measures, not individual exposure. CitiSense consists of a body-worn low-power board, a back-end server for machine learning and sharing, and a smartphone application that relays sensor readings from board to server, and displays exposure information. Studies show effects on user awareness and behavior

Mechanical and Aerospace Engineering

3:10 p.m.

Juan C. Lasheras, Professor

"Master of Advanced Study in Medical Device Engineering"
The new Master of Advanced Study in Medical Device
Engineering is aimed at professional engineers who plan to
become technical leaders in the field of biomedical
instrumentation and devices. Specialized coursework includes
clinical needs assessment, mechanics and transport, modern
life science technologies, anatomy and physiology,
biomaterials, wireless embedded controls, and computer aided
design. The program includes a design and prototype option as
well as a focus on relevant business issues.

Bioengineering

3:30 p.m.

Todd P. Coleman, Associate Professor

"Tattoo Electronics for Biomedical Applications"

Thin, flexible, invisible electronics that can be embedded in temporary tattoos, can sense multiple modalities of biological signals, and can wirelessly transmit them to a mobile device, show great promise for transforming the practice of medicine from periodic monitoring of signals with bulky, wired sensors in hospital settings to continuous monitoring of health with invisible wireless sensors in natural environments.

NanoEngineering

3:50 p.m.

Jennifer N. Cha, Associate Professor "Biomolecular Architectures and Systems for Nanoengineering Thin Film Devices"

While nanomaterials have shown great potential for electronic and photonic applications, their organization onto surfaces for incorporation into functional devices has remained difficult. To address some of these challenges, Professor Cha will describe recent efforts to self-assemble nanoscale materials on surfaces with control over material location and crystallographic orientation.

Electrical and Computer Engineering

4:10 p.m.

Gert Lanckriet, Associate Professor "Music Search and Recommendation"

Thanks to a revolution in music production and distribution, unprecedented amounts of new music proliferate the web from every corner of the world. By developing novel music recommendation algorithms and search technologies, Professor Lanckriet's work is poised to have a broad societal impact by helping millions of users find and organize musical content.

GRADUATE STUDENT POSTERS

BIOENGINEERING

- Ephrin-A1 Induces Cell Contraction to Exert Three-Dimensional Traction Force on the Substrate Via a PI3K-Dependent Pathway Student: Min-Shu Chan; Professor: Shu Chien
- Biomaterial Delivery Leads to Epicardial Activation Delays Acutely After Injection in Viable LV Myocardium as Assessed by Optical Mapping Student: Aboli A Rane; Professor: Karen Christman
- 3. Fibroblasts Influence Muscle Progenitor Differentiation and Alignment in Contact Independent and Dependent Manners in Organized Co-Culture Devices

Student: Nikhil Rao; Professor: Karen Christman

- 4. Injectable Extracellular Matrix Derived Hydrogel Enhances Retention and Delivery of a Heparin Binding Growth Factor in Ischemic Myocardium Student: Sonya B Seif-Naraghi; Professor: Karen Christman
- Extracellular Matrix Proteins are Necessary for Mouse Embryonic Stem Cell Differentiation and May Guide Stem Cell Fate Student: Hermes Alexander Taylor-Weiner; Professor: Adam J Engler
- Human Mesenchymal Stem Cells Migration on Matrices with Distinct Elasticity Gradient Magnitudes
 Students: Ludovic Guillaume Vincent, Yu Suk Choi; Professor: Adam J Engler
- 7. Regulatory Mechanisms of Age-Related Diastolic Dysfunction Student: Gaurav Kaushik; Professor: Adam J Engler
- 8. Stem Cell Differentiation can be Directed by Scaffolds with Adhesive Domains

Student: Somyot Chirasatitsin; Professor: Adam J Engler

9. Ultrasound Ruptured Liposomes for Local Delivery of Therapeutic Biomolecules

Student: Michael Jerome Benchimol; Professor: Sadik Esener

- Genetic Assessment of Glioblastoma Primary Tumors and Matched Patient-Derived Pre-Clinical Models Using Whole Exome Sequencing Student: Shawn E Yost; Professor: Kelly Frazer
- **11. Dynamic Environment Microchemostat for Evolutionary Experiments** Student: Ivan Alexandrovich Razinkov; Professor: Jeff Hasty
- 12. Multiscale Platform for Coordinating Cellular Activity Using Synthetic Biology

Students: Arthur Benjamin Prindle, Phillip Samayoa; Professor: Jeff Hasty

- **13.** NF-KAPPAB Signaling in a Dynamic Microfluidic Environment Student: Martin Kolnik; Professor: Jeff Hasty
- **14.** Tracing Macrophage Polarization Using Automated Tracking Student: Brooks Edward Taylor; Professor: Jeff Hasty

BIOENGINEERING continued

15. Detection of Thrombin and Other Protease Activities Directly in Whole Blood Samples

Students: Augusta Esmeralda Modestino, Johnson Yu, Mrudul Bhine

Professor: Michael Heller

16. Isolation and On-Chip PCR Amplification of Disease Related DNA Nanoparticulate Biomarkers: Seamless Sample-to-Answer Integrated Diagnostics

Student: Avery R Sonnenberg; Professor: Michael Heller

17. A Microfluidic Device for Single-Cell Gene Expression Profiling Students: Alexander Philip Hsiao, Matthew Walsh; Professor: Xiaohua Huang

18. High-Throughput Single Cell Genomics on a Microfluidic Device

Students: Wai Keung Chu, Hosuk Lee Professors: Xiaohua Huang, Kun Zhang

19. A Strategy for Analyzing High-Throughput Quantitative Genetic Interaction Data in Multi-Condition Experiments

Student: Gordon J Bean; Professor: Trey Ideker

20. Challenges in Network Based Cancer Classification

Student: Sanath Kumar Ramesh; Professor: Trey Ideker

21. Inferring Sparse Multivariate Models to Predict Disease Phenotype from Genotype

Student: Matan Hofri; Professor: Trey Ideker

22. DNA-Based Dual-Spring Cross Shaped Nanoactuator

Students: Alexander Mo, Alan Gillman; Professor: Ratneshwar Lal

23. The Role of the Scar/Wave Complex in Regulating the Traction Stresses During Amoeboid Motility

Student: Effie E Bastounis

Professors: Juan Lasheras. Juan Carlos del Alamo

24. In Vivo Two-Photon Microscopy for Imaging Leukocytes in Atherosclerotic Plagues

Student: Sara Ashley McArdle; Professor: Klaus Ley

25. Patient Specific Models of Human Atrial Fibrillation

Student: Matthew James Gonzales: Professor: Andrew McCulloch

26. Subcellular Modeling of PKA Activation and cAMP Diffusion in Localized Microdomains of Adult Cardiac Myocytes

Student: Britton Warren Boras: Professor: Andrew McCulloch

27. Understanding Metabolic Function and Regulation in Stem Cells and Tumors

Students: Nathaniel Martin Vacanti. Seth Parker

Professor: Christian Michael Metallo

28. A Novel Role for Vinculin in Myocardial Fiber Mechanics

Student: Jared Rylan Tangney

Professors: Jeffrey Omens, Andrew McCulloch

29. Genome-Scale Modeling of Microbial Electrosynthesis for Electrofuel Production

Students: Harish Nagarajan, Juan Nogales, Merve Sahin, Ali Ebrahim, Adam Feist; Professors: Bernhard O. Palsson, Karsten Zengler

Control of the Biophysical Properties of Osteoarthritic Synovial Fluid Student: William J McCarty; Professor: Robert Sah

31. Proximal Femoral Shape Variations in Legg-Calvé-Perthes Disease and Slipped Capital Femoral Epiphysis

Student: Elaine F Chan; Professor: Robert Sah

32. The *In Vivo* Performance of Osteochondral Allografts in the Goat is Diminished with Extended Storage and Decreased Cartilage Cellularity Student: Andrea L Pallante; Professor: Robert Sah

33. Trypsin and MMP-9 Levels Increase in Plasma and Lung After Hemorrhagic Shock: Potential Mechanism for Membrane Receptor Damage Student: Angelina Esther Altshuler; Professor: Geert Schmid-Schönbein

34. At the Interface of Detail and Abstraction: Modeling Heterogeneous Dynamics and Plasticity in Cortical Pyramidals

Student: Helen G Saad; Professor: Gabriel Silva

35. Doubly Penalized Lasso for Reconstruction of Biological Networks Students: Behrang Asadi, Mano R. Maurya

Professors: Shankar Subramaniam, Daniel Tartakovsky

36. Quantitative Transcriptomics Using Designed Primer-Based Amplification

Student: Vipul Bhargava

Professors: Shankar Subramaniam, Vineet Bafna, Shyni Varghese

37. Rapid Self-Healing of Synthetic Hydrogels Via a PH-sensitive Reversible Mechanism

Student: Ameya M Phadke; Professor: Shyni Varghese

38. Understanding the Physical Cues Necessary for ECM Degradation During Cancer Migration

Student: Aereas Aung; Professor: Shyni Varghese

39. Massively Parallel Whole Genome Amplification of Single Cells Student: Jeffrey A Gole; Professor: Kun Zhang

COMPUTER SCIENCE AND ENGINEERING

40. Characterizing the Variability in Power Consumption in Modern Computing Platforms

Student: Bharathan Balaji; Professors: Yuvraj Agarwal, Rajesh Gupta

41. Duty-Cycling Control for the Energy Efficient Smart Building

Students: Thomas Lee Weng, Seemanta Dutta Professors: Yuvraj Agarwal, Rajesh Gupta

42. Tettnang: Reducing Library Overheads Through Source-to-Source Translation

Student: Alden P King; Professor: Scott B Baden

43. Translating MPI Applications to a Latency-Tolerant, Data-Driven Form Student: Nhat Tan Nguyen Thanh; Professor: Scott B Baden

44. Exploring MS Imaging Data in a Semi-Supervised and Interactive Manner Student: Jocelyne Bruand; Professor: Vineet Bafna

45. Beyond the Face Box: Incorporating Head Shape into Face Identification Students: Eric M Christiansen, Iljung Sam Kwak, Andrew Ziegler

Professors: Serge Belongie, David Kriegman

46. Interactive Image Based Geolocation

Students: Mohammad Moghimi Najafabadi, Tsung-Yi Lin Professor: Serge Belongie

47. Non-Rigid Surface Detection for Gestural Interaction with Applicable Surfaces

Student: Andrew Moore Ziegler; Professor: Serge Belongie

48. Recommendation for Chinese Microblogs

Student: Chen Xie; Professor: Charles Elkan

49. Weighted Aggregation of Classifiers for Active Learning

Student: Akshay Balsubramani: Professor: Yoav Freund

CodeSpells: Encouraging and Empowering More People to Learn Computer Science Through an Explorative Video Game

Students: Sarah Marie Esper, Stephen Foster Professors: William Griswold, Beth Simon

51. Fitbit+: a Behavior-Based Intervention System to Reduce Sedentary Behavior

Students: Laura R Pina, Ernesto Ramirez Professors: William Griswold, Gregory Norman

52. Personal Air Quality and Social Networks

Students: Elizabeth S Bales, Nichole Quick, Nima Nikzad, Celal Ziftci, Thomas Barbour, Piero Zappi

Professors: William Griswold, Ingolf Krueger, Tajana Simunic-Rosing

53. WitchDoctor: Clairvoyant Refactoring Support for IDEs

Student: Stephen Ryan Foster; Professors: William Griswold, Sorin Lerner

54. Dynamic Deferral of Workload for Capacity Provisioning in Data Centers Student: Muhammad Abdullah Adnan; Professor: Rajesh Gupta

55. Minerva: a Compute Capable SSD Architecture for Next-Generation Non-Volatile Memories

Student: Arup De; Professors: Rajesh Gupta, Steven Swanson

56. Lifetime Margin Reduction by Exploiting Non-Uniform Effects of Electromigration

Student: Siddhartha Nath

Professors: Andrew B. Kahng, Tajana Simunic-Rosing

57. A Hardware Approach to Information Flow Security

Student: Jason Kaipo Oberg; Professor: Ryan Kastner

58. Designing an Adaptive Acoustic Modem for Underwater Sensor Networks Students: Jennifer Nicole Trezzo, Lingjuan Wu; Professor: Ryan Kastner

59. Detection and Classification of Mine Like Objects in Side Scan Sonar **Imagery**

Student: Christopher M Barngrover; Professors: Ryan Kastner, Serge Belongie

60. Distributed Tracking for Underwater Networked Swarms

Student: Karl Magnus Delight; Professor: Ryan Kastner

61. Real-Time High Content Optical Mapping System

Student: Pingfan Meng; Professor: Ryan Kastner

62. RIFFA: a Reusable Integration Framework for FPGA Accelerators

Student: Matthew D Jacobsen; Professor: Ryan Kastner

63. Trimmed VLIW: Moving Application Specific Processors Towards High Level Synthesis

Student: Janarbek Matai; Professor: Ryan Kastner

64. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems

Student: Barry Demchak; Professor: Ingolf Krueger

65. The Natural Language of Playlists

Student: Brian R McFee; Professor: Gert Lanckriet

66. Addressing Temperature Variability in Heterogeneous Processors with Accelerators

Student: Yen-Kuan Wu; Professor: Tajana Simunic-Rosing

67. Benefits of Green Energy and Proportionality in High Speed Wide Area **Networks Connecting Data Centers**

Student: Baris Aksanli, Professor: Tajana Simunic-Rosing

68. Latent Variables Based Data Estimation for Sensing Applications Students: Nakul Verma, Piero Zappi; Professor: Tajana Simunic-Rosing

69. Temperature and Cooling Management in Servers

Student: Christine Shun Yee Chan; Professor: Tajana Simunic-Rosing

COMPUTER SCIENCE AND ENGINEERING continued

70. Themis: Energy Management in Virtualized Environments

Students: Liuyi Zhang, Gaurav Dhiman, Vasileios Kontorinis

Professor: Tajana Simunic-Rosing

71. User-Centric Data Collection Application with Adaptive Broadcast Rate in WSN without Routing

Student: Jinseok Yang; Professor: Tajana Simunic-Rosing

72. Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data Centers

Student: Jagannathan Venkatesh; Professor: Tajana Simunic-Rosing

- 73. Redesigning Transaction Mechanisms for Fast, Solid-State Disks
 Students: Trevor Scott Bunker. Joel Coburn: Professor: Steven Swanson
- 74. Manycore Architecture Augmented for Multiprogrammed Data Centers
 Student: Anshuman Gupta; Professor: Michael Taylor
- 75. Investigating Pedal Errors and Multi-Modal Effects: Novel Driving Testbeds and Experimental Analysis

Student: Cuong Tran; Professor: Mohan Trivedi

76. Managing Distributed Ups Energy for Effective Power Capping in Data Centers

Students: Vasileios Kontorinis, Baris Aksanli

Professors: Dean M. Tullsen, Tajana Simunic-Rosing

77. Distributed Storage and Interactive Analytics for Graph-Structured Data Student: Michael Mihn-Jong Lee; Professor: Yuanyuan Zhou

ELECTRICAL AND COMPUTER ENGINEERING

78. InGaN/GaN High Q, High Voltage and High Linearity Microwave Varactor Diodes

Student: Wei Lu; Professors: Peter M Asbeck, Paul K.L. Yu

79. Stacked FET Q-Band Amplifier in 45-nm CMOS with Saturated Output Power above 21 dBm

Students: Hayg-Taniel Dabag, Bassel Hanafi, Fatih Golcuk Professors: Peter M Asbeck, James Buckwalter, Larry Larson

80. A BiFET Constructive Wave Power Amplifier for a Multi-Band, Bidirectional Millimeter-Wave Front-End

Student: Tissana Kijsanayotin; Professor: James Buckwalter

81. An Integrate-and-Dump Receiver for High Dynamic Range Photonic Analog-to-Digital Conversion

Student: Timothy D Gathman; Professor: James Buckwalter

82. Q Band Circuits on Silicon on Insulator for Satellite Applications

Student: Mehmet Parlak; Professor: James Buckwalter

83. H.264/AVC Video Packet Aggregation and Unequal Error Protection for Noisy Channels

Student: Kashyap K Kambhatla; Professors: Pamela Cosman, Sunil Kumar

84. Query-Based Models and Algorithms for Distributed Information Dissemination

Student: Efecan Poyraz; Professor: Rene L. Cruz

85. Adaptation of Video Encoding to Address Dynamic Thermal Management Effects

Student: Seyed Ali Mirtar; Professor: Sujit Dey

86. Dynamic Base Station Reconfiguration for Battery Efficient Video Download

Student: Ranjini B Guruprasad; Professor: Sujit Dev

87. Modeling, Characterizing, and Enhancing User Experience in Cloud Mobile Rendering

Student: Yao Liu; Professor: Sujit Dey

88. User Interest Estimation Based on Video Webpage Classification

Student: Chetan Kumar Verma; Professor: Sujit Dey

89. Video Caching in the Wireless Cloud: Algorithms and Impact on Delay and Capacity

Student: Hasti Ahlehagh; Professor: Sujit Dev

90. Optofluidics

Students: Lindsay Michelle Freeman, Lin Pang, Matthew Chen Professor: Yeshaiahu (Shaya) Fainman

91. Room-Temperature Sub-Wavelength Scale Metallo-Dielectric Lasers

Students: Brett David Wingad, Qing Gu, Olesya Bondarenko

Professor: Yeshaiahu (Shaya) Fainman

ELECTRICAL AND COMPUTER ENGINEERING continued

92. Platform Motion Blur Image Restoration SystemStudent: Stephen Joseph Olivas; Professor: Joseph Ford

93. Reactive Self-Tracking Solar ConcentrationStudent: Katherine A Baker; Professor: Joseph Ford

94. Composite Structures for Bit Patterned Media (BPM) Student: Nasim Eibagi; Professor: Eric Fullerton

95. Electrical Manipulation of Nanoscale MagnetismStudent: Jonathan J Sapan; Professor: Eric Fullerton

96. Convex Combination of Sparse Control Policies in Fast Human Movements

Student: Mehrdad Yazdani

Professors: Robert Hecht-Nielsen, Clark C Guest

97. Nanofabrication on a Silicon Wafer Size Electric Field Assembler Synergy of Top-Down and Bottom-Up Technologies

Student: Youngjun Song; Professor: Michael Heller

98. A Tunable Sensor for Adaptive Voltage Scaling Student: Tuck Boon Chan; Professor: Andrew B Kahng

99. Accuracy-Configurable Adder for Approximate Arithmetic Designs Student: Seok Hyeong Kang; Professor: Andrew B Kahng

100. Memory Interface Exploration with CACTI'S Power-Area-Timing Models Student: Vaishnav Srinivas; Professor: Andrew B Kahng

101. Pixel-by-Pixel Contrast-Enhanced Ultrasound Time-Intensity Curve Analysis for Automatic Tumor Diagnosis

Student: Casey Nghia Ta; Professor: Andrew Kummel

102. Optimizing Graded Relevance Rankings in Mulitmedia Data Students: Janani Kalyanam, Emanuele Coviello, Brian McFee Professor: Gert Lanckriet

103. Searching Music with Trees. Fast Indexing of Musical Codebooks for Efficient Semantic Annotation.

Students: Emanuele Coviello, Katherine Ellis; Professor: Gert Lanckriet

104. Strongly Enhanced Fluorescence Decay Rates on Multilayered Plasmonic Metamaterials

Student: Danyong Lu; Professors: Zhaowei Liu, Eric Fullerton

105. Jacobian-Enhanced Nudged Elastic Band Solver for Micromagnetics Student: Marco Antonio Escobar Acevedo; Professor: Vitaliy Lomakin

106. Micromagnetic Nanoparticle Array Simulator Students: Javier Espigares Martin, Marko Lubarda, Marco Escobar, Shaojing Li; Professor: Vitaliy Lomakin

107. Stereo Ego-Motion Estimation for a Long Noisy Sequence Student: Haleh Azartash; Professor: Truong Q Nguyen

108. Selective Decision Directed Channel Estimation for OFDM Communications Over Multipath Rician Fading Channels Student: Andreja Radosevic; Professor: John Proakis

109. An Efficient Full Digital Frequency Hopping Modem Based on Polyphase Filter Banks

Students: Xiaofei Chen. Elettra Venosa Professors: Bhaskar Rao. Fredric Harris

110. An ICA-Based PHD Filter Approach for Tracking of Unknown **Time-Varying Number of Sources**

Student: Alireza Masnadi-Shirazi: Professor: Bhaskar Rao

111. Compressed Sensing and Sparse Signal Recovery by Sparse Bayesian Learning: Models, Algorithms, and Applications

Student: Zhilin Zhang; Professor: Bhaskar Rao

112. Multicell Network Duality with Instantaneous and Statistical Channel Information: a Nonlinear Perron-Frobenius Characterization

Student: Yichao Huang: Professor: Bhaskar Rao

113. On the Benefits of the Block-Sparsity Structure in Sparse Signal Recovery

Student: Hwan Joon Kwon: Professor: Bhaskar Rao

114. 16 Element 110 GHZ Phased Array Tansmitter with Wafer-Scale Integration

Student: Woorim Shin; Professor: Gabriel Rebeiz

115. A Miniature RF MEMS Metal-Contact Switch with High Biaxial and Stress-Gradient Tolerance

Student: Chenhui Niu; Professor: Gabriel Rebeiz

116. High Power, High Q, High Reliability RF MEMS Switches

Student: Hosein Zareie; Professor: Gabriel Rebeiz

117. Analysis and Application of Stochastic Decoding of LDPC Codes

Student: Aman Bhatia: Professor: Paul Siegel

118. Optimized Cell Programming for Flash Memories with Quantizers Student: Minghai Qin; Professor: Paul Siegel

119. Quantized Min-Sum Decoders with Low Error Floor for LDPC Codes Student: Xiaojie Zhang; Professor: Paul Siegel

120. Modelling the Effect of Allergen Exposure on Sensitization in Relation to

Student: Tejaswini Narayanan; Professor: Shankar Subramaniam

Atopy During Childhood: a Machine Learning Approach

121. Detection of U.S. Traffic Signs Using Computer Vision

Student: Andreas Moegelmose; Professors: Mohan Trivedi, Thomas Moeslund

ELECTRICAL AND COMPUTER ENGINEERING continued

122. Distributed Multisensory Signals Acquisition and Analysis in Dyadic Interactions

Student: Ashish K Tawari: Professor: Mohan Trivedi

123. Improving Driver Safety Through Smartphone-Based Intelligent Vehicle Applications

Students: Derick Arnold Johnson, Minh Van Ly; Professor: Mohan Trivedi

124. Probabilistic Active Learning-Based Detection of Vehicles by Parts Student: Sayanan Vinoth Sivaraman; Professor: Mohan Trivedi

125. Role of Head Dynamics in Human-Centered Active Safety Systems:
Comparative Analysis of Vision Based Approaches
Student: Suiitha Catherine Martin: Professor: Mohan Trivedi

126. Intermediate Band Solar Cell Material GaNAsP Student: Yanjin Kuang; Professor: Charles Tu

127. Self-Catalyzed GaP/GaNP Core/Shell Nanowires on Si(111) by GSMBE Student: Supanee Sukrittanon; Professor: Charles Tu

128. Beyond Visual Semantics: Using Cross-Modal Context for Image Classification

Student: Mandar Dilip Dixit; Professor: Nuno Vasconcelos

129. Efficient Photoelectrochemical Solar Cells with 3D Metal-Oxide/Si Branched Nanowire Heterostructures

Students: Alireza Kargar, Soheil Seena Partokia, Chulmin Choi, Ke Sun, Yi Jing; Professors: Deli Wang, Sungho Jin

MECHANICAL AND AEROSPACE ENGINEERING

130. Laser Cut X-pinches

Student: Joohwan Kim; Professor: Farhat Beg

131. Transport of Magnetic Field in Planar Wire Arrays

Student: Derek A Mariscal; Professor: Farhat Beg

132. Modeling of AL/W Granular Porous Composites During Dynamic Deformation

Student: Karl Liberty Olney; Professors: David Benson, Vitali Nesterenko

133. RAPID: Reconfigurable Automated Parameter-Identifying Dynamometer Student: Nicholas Jenkins Morozovsky; Professor: Thomas Bewley

134. Stability of Gas-Fluidized Beds

Student: Kevin Matthew Mandich; Professor: Robert J. Cattolica

135. Mechanical Properties and Microscopic Structure of Vegetable Ivory Student: Yinghao Chu: Professors: Carlos Coimbra, Marc A Meyers

136. Power Load Forecasting for High Solar Penetration Communities and Its Applications

Student: Amanpreet Kaur; Professor: Carlos Coimbra

137. Solar Resource Forecasting: from Instrumentation to Real Time Forecasting

Student: Lukas Nonnenmacher; Professor: Carlos Coimbra

138. Estimation of Ocean Wave Parameters from Inter-Drogue Distance Measurements

Student: Michael Ouimet; Professor: Jorge Cortes

139. Robust Optimal Investment Policies for Servicing Targets in Acyclic Digraphs

Student: Cameron Nowzari: Professor: Jorge Cortes

140. Block-Oriented Nonlinear System Identification via Semidefinite Programming

Student: Younghee Han; Professor: Raymond de Callafon

141. Data-Based Modeling of a LiFePO4 Battery as an Energy Storage System Student: Xin Zhao; Professor: Raymond de Callafon

142. Identification and Modeling of Turbine Engine Components for Fault Detection and Health Monitoring

Student: Chad M. Holcomb

Professors: Raymond de Callafon, Robert Bitmead

143. Modelling and Estimation of Servo Actuator Dynamic Variability with Application to LTO-Drives

Student: Longhao Wang; Professor: Raymond de Callafon

144. Robust Identification for Networked Control Systems with UncertaintiesStudents: Huazhen Fang, Jia Wang; Professor: Raymond de Callafon

MECHANICAL AND AEROSPACE ENGINEERING continued

145. System Identification with Eigenvalue Constraints Applied to the Thermal Analysis of an Integrated Circuit

Student: Daniel N Miller; Professor: Raymond de Callafon

146. Mechanical Properties of Vascular Endothelial Cells Exposed to Stretch Students: Kathryn Elizabeth Osterday, Thomas Chew, Phillip Loury, Manuel Gomez-Gonzalez: Professor: Juan Carlos del Alamo

147. Smell-o-Vision: Remotely On-Off Switchable Odor-Releasing Capsules Students: Calvin James Gardner, Hyunsu Kim; Professor: Sungho Jin

148. An Indoor-Outdoor Building Energy Simulator to Study Urban Modification Effects on Building Energy Use

Student: Neda Yaghoobian; Professor: Jan Kleissl

149. Sky Imager Forecasting for Microgrid Optimization

Students: Chi Wai Chow, Bryant Urquhart, Anders Nottrot, Jenny Luoma Professor: Jan Kleissl

150. 3D Plasma Blob Modeling

Student: Justin R Angus; Professor: Sergei Krasheninnikov

151. Modeling of Hydrogen Retention in the Bulk of Metallic Plasma Facing Components

Student: Jerome Guterl; Professors: Sergei Krasheninnikov, Roman Smirnov

152. A Quantized-Input Control Lyapunov Approach for Motor Drives

Student: Gideon Andrew Prior

Professors: Miroslav Krstic, Massimo Franceschetti

153. Air Cushion Adaptive Disturbance Cancellation for the Reduction of Wave Induced Motion of Ramp-Connected Ships

Student: Halil I Basturk; Professor: Miroslav Krstic

154. Compensation of State-Dependent Input Delay for Nonlinear Systems

Student: Nikolaos Bekiaris Liberis

Professor: Miroslav Krstic

155. Nonlinear Dynamics and Control

Student: Alex Scheinker: Professor: Miroslav Krstic

156. Power Optimization for Photovoltaic Micro-Converters Using Multivariable Gradient-Based Extremum-Seeking

Student: Azad Ghaffari: Professors: Miroslav Krstic. Sridhar Seshaqiri

157. Stackelberg Equilibrium Seeking in Noncooperative Games

Student: Paul A Frihauf; Professor: Miroslav Krstic

158. Atomic Study of Reversible and Irreversible Sensing Response of NO2 Dosing on CuPc Layer

Students: Jun Hong Park, James Royer, Tyler Kent

Professor: Andrew Kummel

159. Alzheimer's Disease and Toxic Amyloid Channels: Unraveling Therapeutic Targets by Atomic Force Microscopy, Electrophysiology, MD Simulation, and Protein Engineering

Student: Laura S Connelly; Professors: Ratneshwar Lal, Sungho Jin

160. Dynamic Deformation Between Tricuspid and Bicuspid Aortic Valves In Vitro

Student: Kai Wah Szeto; Professor: Juan Lasheras

161. Three-Dimensional Traction Force Distribution in Migrating Amoeboid Cells

Student: Begona Alvarez-Gonzalez

Professors: Juan Lasheras, Juan Carlos del Alamo

162. Multiscale Airflow Model Representing Healthy and Emphysema Rat Lungs

Student: Jessica M Oakes; Professors: Alison Marsden, Chantal Darguenne

163. Advancements in Current Activated Tip-Based Sintering

Student: Ahmed Mohamed El Desouky Professors: Joanna McKittrick, Khaled Morsi

164. Avian Wing Bones

Students: James Huai Kiang, Hannah Walsh, Sara Bodde, Katya Novitskaya Professors: Joanna McKittrick, Marc A Meyers

165. Electrophoretic Deposition of Phosphors for White Light Emitting Diodes (LEDS)

Student: Jae Ik Choi; Professors: Joanna McKittrick, Jan Talbot

166. Microstructural Characterization of the Bony Plated Armor in the Prehensile Tail of Seahorses

Student: Michael Martin Porter

Professors: Joanna McKittrick, Marc A Mevers

167. Modeling of the Osteoporotic Degradation of Elastic Properties of Trabecular Bone

Student: Ekaterina Evdokimenko

Professors: Joanna McKittrick, Vlado A Lubarda

168. Phosphors for Near UV-Emitting LEDS for Efficacious Generation of White Light

Student: Jinkyu Han; Professor: Joanna McKittrick

169. Research and Application of Field Assisted Sintering Technique or Spark Plasma Sintering

Student: Wei Li; Professors: Joanna McKittrick, Randall German

170. Development of Instrumentation for Direct Observations of Air-Sea Interaction from Land- and Ship-Based Unmanned Airborne Systems Student: Beniamin Donald Reineman: Professor: W. Kendall Melville

171. Micro-Channel Hydroxyapatite Components by Sequential Freeze Drying and Free Pressureless Spark-Plasma Sintering

Student: Yen-Shan Lin; Professors: Marc A Meyers, Eugene Olevsky

MECHANICAL AND AEROSPACE ENGINEERING continued

172. Dynamic Deformation of Strongly Nonlinear Toroidal Rubber Element Student: Chien-Wei Lee; Professor: Vitali Nesterenko

173. Investigation of the Critical Strain Rate Parameter for Co-Rotating Vortex Pairs

Student: Patrick J Folz; Professor: Keiko Nomura

174. Investigation of a Stratified Barotropic Mixing Layer with Coordinate System Rotation

Student: Eric M Arobone; Professor: Sutanu Sarkar

175. Lagrangian Coherent Structures and Particle Transport in Turbulent Separated Flow

Student: Daniel A Nelson; Professor: Sutanu Sarkar

176. Simulation of Spatially Evolving Flow Past a Sphere in a Stratified Fluid Student: Matthew Bronson de Stadler: Professor: Sutanu Sarkar

177. Turbulence Generation and Particle Dynamics in Shocked Particle-Laden Flow

Student: Sean Lin Sheng Davis; Professor: Sutanu Sarkar

178. Critical Limits of Extinction and Autoignition in Dimethyl Ether / Air Flames in the Counterflow Configuration

Student: Ryan Kyle Gehmlich; Professor: Kalyanasundaram Seshadri

179. Effect of Pressure on Combustion of Low Molecular Weight Fuels Student: Ulrich Niemann

Professors: Kalyanasundaram Seshadri, Forman A Williams

180. Numerical and Experimental Investigation of Slider Disk Contact Effects on the Dimple/Gimbal Interface

Students: Youyi Fu, Zhengqiang Tang, Pablo Salas; Professor: Frank E Talke

181. Experimental and Numerical Investigation of Slider Disk Contact in Hard Disk Drives

Students: Liane Manuela Matthes, Wenping Song, Deng Pan

Professor: Frank E Talke

182. Information Theoretic-Based Approach for Data-Driven Biological Networks Reconstruction

Student: Farzaneh Farhangmehr

Professors: Daniel Tartakovsky, Shankar Subramaniam

183. Burning Behavior of Vertical Matchstick Arrays

Student: Michael John Gollner; Professor: Forman A Williams

184. Ignition and Flame Spread of Electrical Wires

Student: Xinyan Huang; Professor: Forman A Williams

185. The Structure, Extinction, and Autoignition of Nonpremixed Toluene Flames

Student: Vaishali Amin

Professors: Forman A Williams, Kalyanasundaram Seshadri

NANOENGINEERING

186. Computational Modeling of Nucleosome Unraveling

Student: Irina Vladinizovna Dobrovolskaia; Professor: Gaurav Arya

187. Computational Modeling to Recover Higher-Order Chromatin Structure from Interaction Frequencies

Student: Dario Meluzzi: Professor: Gaurav Arva

188. Efficient Detection of Point Mutations Through Shear-Induced Unzipping of Hybridized DNA

Student: David Szeto; Professor: Gaurav Arya

189. Single-Molecule Investigation and Molecular Modeling of the **Bacteriophage T4 Genome Packaging Motor**

Student: Amy L Davenport; Professors: Gaurav Arya, Doug Smith

190. DNA Mediated 3D Assembly of Nanoparticles for Thin Film Solar Cell Fabrication

Student: Hyunwoo Noh; Professor: Jennifer Cha

191. DNA-Programmed Assembly of CdSe Nanorods

Student: Sarah Sameera Chowdhurv: Professor: Jennifer Cha

192. Ligand Effects on Platinum Nanoparticle Synthesis and Catlaytic Activity Student: Lauren Marie Forbes; Professors: Jennifer Cha, Joseph Wang

193. Protein Detection by Nanodumbbell Probes

Student: Phyllis Xu; Professor: Jennifer Cha

194. Light-Responsive Composite Biomaterials to Aid in Triggered Drug Delivery

Student: Kolin C Hribar: Professor: Shaochen Chen

195. Melting the Nanostructured Lipid Surface of Microbubbles to Increase Ultrasound-Modulated Fluorescence for Deep Tissue Optical Imaging Student: Carolyn Elizabeth Schutt; Professor: Sadik Esener

196. Synthetic Hollow Enzyme Loaded Porous Nanoshells (SHELS) for **Enzyme Based Therapies**

Student: Inanc Ortac: Professor: Sadik Esener

197. Novel Peptide Synzyme Structures for Biomimetic Catalysis

Students: Tsukasa Takahashi, Michelle Cheung; Professor: Michael Heller

198. Solar Thermochemical Hydrogen Production Plant Design

Student: Jesse Littlefield; Professors: Richard K Herz, Jan Talbot

199. Organic Thin-Film Transistors for Selective Hydrogen Peroxide and **Organic Peroxide Vapor Detection**

Student: James E Royer; Professor: Andrew Kummel

200. Passivation of Indium Gallium Arsenide (2x4) Surface Using Trimethylaluminum

Student: Tyler James Kent; Professor: Andrew Kummel

NANOENGINEERING continued

- 201. Identifying Electrochemical, Structural, and Electronic Properties of Layered Nax[Ni1/3Mn2/3]O2 (0<x<2/3) Cathode Materials in Na-ion Batteries: a Combination of Computational and Experimental Study Student: Jing Xu; Professor: Ying Meng
- 202. The Effect of Particle Size and Morphology on the Electrochemical and Physical Properties of Li-excess Li[Li2/12Ni3/12Mn7/12]O2 Cathode Material

Student: Michael Gabriel Verde; Professor: Ying Meng

- 203. Armadillo Armor: Mechanical Testing and Micro-Structural Evaluation
 Student: Irene Hsu Chen: Professor: Marc A Meyers
- **204.** Laser Compression of Nanocrystalline Tantalum Student: Chia-Hui Lu; Professor: Marc A Meyers
- 205. T2 Tunable Porous Silicon Iron Oxide Nanocomposites for Monitoring Drug Release on MRI Student: Shalini Ananda Yoqendran; Professor: Michael Sailor
- 206. Single Element Force Sensing Transducers Based on Subwavelength Optical Waveguides

Students: Joshua Tan Villanueva, Qian Huang; Professor: Donald J Sirbuly

207. Tunable Energy Conversion Via Nanostructured Piezoelectric Arrays Embedded in an Environment-Responsive Matrix Student: Kanguk Kim; Professor: Donald J Sirbuly

208. Effects of Chemical Additives on the Agglomeration and Zeta Potential of Alumina Nanoparticles

Student: Neil A Brahma; Professor: Jan Talbot

209. Self-Assembled Nanocrystal Coatings on AFM Probes for the Preparation of Tip-Enhanced Raman Spectroscopy Tips

Student: Tyler Jamison Dill; Professor: Andrea Tao

210. Shape-Dependent Localized Surface Plasmon Resonances of Cu2-xS Nanodisks

Student: Su-Wen Hsu; Professor: Andrea Tao

- 211. High Efficient Microrockets and Their Biomedical Applications
 Student: Wei Gao; Professor: Joseph Wang
- 212. Gold Nanoparticle-Stabilized Liposomes for Bacterial Skin Infection Treatment

Student: Soracha Thamphiwatana; Professor: Liangfang Zhang

STRUCTURAL ENGINEERING

- 213. Aerodynamics and Fluid-Structure Interaction Modeling of Wind Turbines Students: Ming-Chen Hsu, Artem Korobenko; Professor: Yuri Bazilevs
- **214.** Non Linear Aeroelastic Analysis of Joined Wing Configurations Student: Rauno Cavallaro; Professors: David Benson, Luciano Demasi
- 215. System Identification and Nonlinear Finite Element Modeling of a Full-Scale 5-Story Reinforced Concrete Building Tested on the NEES-UCSD Shake Table

Students: Rodrigo Renato Astroza, Xiang Wang, Hamed Ebrahimian Professors: Joel Conte, Tara Hutchinson

- 216. Seismic Responses of a Large Highway Exchange Student: Kyung Tae Kim; Professor: Ahmed Elgamal
- 217. Experimental and Computational Investigation of Consolidation-Induced Contaminant Transport for High Water Content Geo-Materials
 Student: Hefu Pu; Professor: Patrick Joseph Fox
- 218. BNCS: Full-Scale Structural and Nonstructural Building System Performance During Earthquakes
 Student: Michelle Carolyn Chen; Professor: Tara Hutchinson
- 219. Full-Scale Structural and Nonstructural Building System Performance During Earthquake and Post-Earthquake Fire - Architectural Components

Student: Xiang Wang; Professor: Tara Hutchinson

220. Automatic Mesh Generation for Biomechanical Models Based on 3D Micro-CT Images

Student: Poorya Mirkhosravi; Professor: Petr Krysl

- 221. Extending Vibration and Wave Propagation Control Using Piezoelectric Materials and Resonant Shunts to Composite Wind Turbine Blades Student: Jeffery Dwayne Tippmann; Professor: Francesco Lanza di Scalea
- 222. Measurement of Thermal Stresses in Rails by Electro Mechanical Impedance (EMI) Measurement

Students: Xuan Zhu, Robert Phillips; Professor: Francesco Lanza di Scalea

223. Non-Contact Ultrasonic System for Rail Flaw Detection and Surface Characterization

Students: Stefano Mariani, Robert Phillips Professor: Francesco Lanza di Scalea

224. Nonlinear Semi-Analytical Finite Element Algorithm for Internal Resonance Analysis in Complex Waveguides - Application to Thermal Stress and Buckling Detection in Rails

Student: Claudio Nucera; Professor: Francesco Lanza di Scalea

225. Structural Health Monitoring of Wind Turbine Blades Using Advanced Infrared Thermography

Student: Arun Manohar; Professor: Francesco Lanza di Scalea

STRUCTURAL ENGINEERING continued

226. Full-Scale Structural and Nonstructural Building System Performance
During Earthquake and Post-Earthquake Fire - MEP, FF&E and Contents
Students: Elide Pantoli, Michelle Chen, Xiang Wang

Professors: Jose Restrepo, Tara Hutchinson, Joel Conte

227. Statistically-Based Damage Detection in Geometrically-Complex Structures Using Ultrasonic Interrogation

Student: Colin M Haynes; Professor: Michael Todd

228. Ultra Low-Power Sensor Node for SHM Networks
Student: Scott Anthony Ouellette; Professor: Michael Todd

229. Uncertainty Quantification in Transmissibility-Derived Features Used for Fault Detection

Student: Zhu Mao; Professor: Michael Todd

230. Dynamics of Offshore Floating Wind Turbines

Student: Seyedeh Sara Salehyar; Professor: Qiang Zhu

NOTES

THANK YOU TO OUR JUDGES

A . Al . 15 (I.:	0 " 14 " 1
Amir Abolfathi	Sonitus Medical
Dave Adams	Lane Engineers
Jim Adler	Intelius
Claudio Anzil	Peregrine Semiconductor
James Avery	San Diego Gas & Electric
Michelle Baeza	Kapsch TrafficCom
Mary Baker	ATA Engineering
Jared Bell	KPFF Consulting Engineers
Jeff Bishop	Alere San Diego
Dustin Blair	Hewlett Packard
Polina Braunstein	Quake Global
Quoc Bui	Bitzio
Chip Chapin	Google
Kuo-Chiang Chen	Schlumberger
Jay Chitnis	EMC
Paul Conley	Paladin Capital Group
Will Cooper	ElectronGPS
Gokce Dane	Qualcomm
Kenny Dang	Medtronic
Silvia De Dea	Cymer
Don Deel	EMC
Austin Derfus	Alere
Nikolai Devereaux	ViaSat
Michael DiBattista	Qualcomm
Wayne Dunstan	Cymer
David Esbeck	Solar Turbines
Iman Famili	Intrexon
Tim Fasel	Quartus Engineering
Frank Flores	Northrop Grumman
Steven Fraser	Cisco Systems
Ervin Frazier	Rincon Research Corp
James Frost	Simon Wong Engineering
Andres Garcia	Qualcomm
Jeff Glasson	VMware
Matthew Graham	Cymer
Kevin Gunderson	Illumina
Taner Halicioglu	
Christopher Hall	International Bridge Technologies
Christopher Hall	Booz Allen Hamilton
Steve Harrington	Flometrics
Steve Hart	ViaSat
Matthew Hedayat	STG
Leo Holland	General Atomics
Florentino Idosor	The Boeing Company
Jim Kaplan	Lockheed Martin
Jason Kenagy	Qualcomm
Erik Kistler	UC San Diego Health Care Systems-VA San Diego
Dan Kline	Novo Engineering
Sam Knight	TechnoCom Corporation
Arne Knudsen	Kyocera America

LAUNCH YOUR CAREER WITH VIASAT

NOW HIRING
New Grads and Interns

VIASAT.COM/CAREERS

RESUMES > collegecareers@viasat.com

THANK YOU TO OUR JUDGES

Raj Krishnan	Biological Dynamics
Paul Kukuchek	Goodrich Aerostructures
Albert Kurkchubasche	Dassault Systemes
Ryan Kurrle	General Electric - GE Aviation Systems
Greg Kusinski	Chevron Energy Technology Company
Mike Lafferty	Life Technologies
Roy Lefkowitz	Aethlon Medical
Shouyan Lee	Medical Implant Mechanics
Louis Liang	
Carl Lippke	Solar Turbines
Jody Martin	BD Biosciences
Karen May-Newman	San Diego State University
David McElfresh	Oracle
Sima Mehlberg	ICRC
Robert Meyer	BAE Systems
Michael Miller	RUAG Aerospace USA
Fariborz Moazzam	Moazzam & Associates
Pushpendra Mohta	Vayusphere
Anton Monk	Entropic Communications
Matt Newsome	Cubic Transportation Systems
Desmond O'Sullivan	Morrison & Foerster
Michael Paquette	Qualcomm
William Proffer	SAIC
Mahim Ranjan	Qualcomm
Anthony Ratcliffe	Synthasome
Jeff Rice	BAE Systems
Vicente Rodriguez	Qualcomm
Rostislav Rokitski	Cymer
Christopher Root	NAVAIR Fleet Readiness Center Southwest
Enrico Ros	Qualcomm Innovation Center
Indranil Roy	Schlumberger
Maurice Sabado	SAIC
Gurkanwal Sahota	Qualcomm
Jeffrey Salas	VA San Diego Healthcare System
Priyank Saxena	Solar Turbines Inc., Caterpillar
Ridham Shah	Qualcomm CDMA Technologies
David Sheehan	Volcano Corporation
Alex Simpkins	University of Washington
Adrian Smith	Consultant
Benjamin Sullivan	TearLab
Pat Sullivan	PEO C4I
Mayank Tiwari	Qualcomm
Hai Tran	Hewlett Packard
Gopi Tummala	Qualcomm
Mark Van Veen	Varasco
John VanZandt	CEO Softcenters
Sara Weis	UC San Diego Dept of Pathology
Edward Wu	Google
James Wurzbach	Raytheon

SAIC is helping prepare the next generation for their calling... a career in science and technology, and we're proud to support the Jacobs School of Engineering Research Expo.

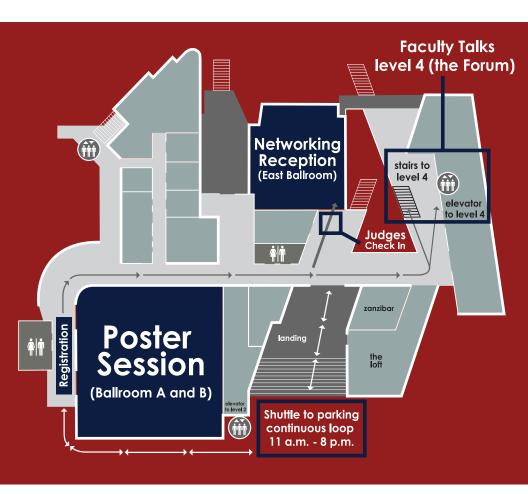
For more information visit **saic.com/career/students**

DEPARTMENTS

Bioengineering	be.ucsd.edu
Computer Science and Engineering	cse.ucsd.edu
Electrical and Computer Engineering	ece.ucsd.edu
Mechanical and Aerospace Engineering	maeweb.ucsd.edu
NanoEngineering	ne.ucsd.edu
Structural Engineering	structures.ucsd.edu

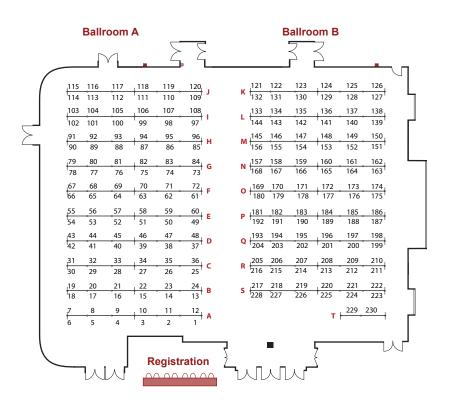
Affiliated Research Institutes

Calit2	www.calit2.net
Center for Algorithmic & Systems Biology	casb.ucsd.edu
Center for Energy Research	cer.ucsd.edu
Center for Magnetic Recording Research	cmrr.ucsd.edu
Center for Networked Systems	cns.ucsd.edu
Center for Wireless Communications	cwc.ucsd.edu
Cymer Center for Control Systems and Dynamics	ccsd.ucsd.edu
Information Theory & Applications Center	ita.ucsd.edu
Institute of Engineering in Medicine	iem.ucsd.edu
Powell Structural Research Labs	structures.ucsd.edu
San Diego Supercomputer Center	www.sdsc.edu


RESEARCH EXPO MAP

Poster Session: level 2 (Ballroom A and B)

Faculty Talks: level 4 (the Forum)


Networking Reception: level 2 (East Ballroom)

Parking Shuttle: 11 a.m. - 8 p.m.

GRADUATE STUDENT RESEARCH POSTERS

Ballroom

Bioengineering	1 - 39
Computer Science and Engineering	40 - 77
Electrical and Computer Engineering	78 - 129
Mechanical and Aerospace Engineering	130 - 185
NanoEngineering	186 - 212
Structural Engineering	213 - 230